

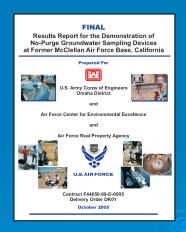
We Make It Easier for YOU!!

www.eonpro.com

All photographs copyright EON Products, Inc. Use by written permission only.

No-Purge Sampling

- Is a method for obtaining representative concentration of groundwater contaminants under natural flow conditions.
 - In-Situ
 - No Induced Flow
 - No Induced Mixing


Diffusion Reports

Technical Studies & Reports

Key Benefits

➤ Reduce Sampling Cost by 50-70%

Provide Depth Specific Concentrations

Reduce Chance for Sampling Error

No Expensive Equipment to Maintain

Cost Reduction

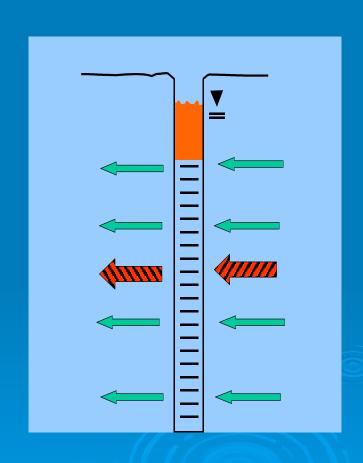
- Reduce Sampling Cost 50-70%
 - No Well Purging Time
 - No Purge Water Disposal Cost
 - No Pumps or Support Equipment
 - Inexpensive Disposable Samplers
 - Re-Usable Accessories
 - Deploy in Minutes

NO-Purge Cost Validation

TABLE 5.2 SUMMARY OF COST ANALYSIS RESULTS NO-PURGE SAMPLER DEMONSTRATION McCLELLAN AFB, CALIFORNIA

Sampling Method	Per Well, Per Event Cost
3-Volume Purge	\$310
Low-Flow Purge	\$280
Snap Sampler	\$155
RPPS	\$104
PsMS	\$91
RCS	\$80
PDBS	\$68
HydraSleeve®	\$63

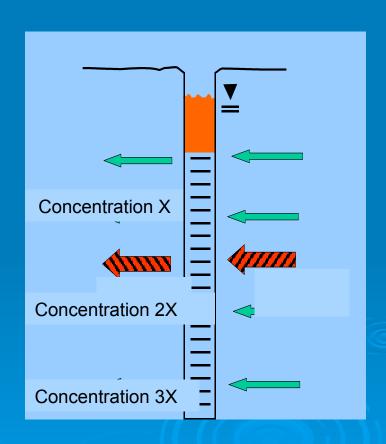
Equilibrator Validation


McClellan Excerpt

"The PDBS and HydraSleeve® were the least expensive sampling methods, with the primary cost difference between the two being the time required to refill a new PDBS that is not necessary when using the HydraSleeve®."

Technical Basis

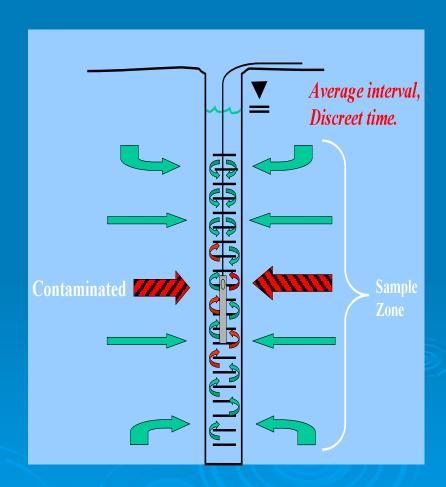
- Water in the Screen Zone Represents Water in Adjacent Formation
 - Flow Required
 - Natural Horizontal Flow Refreshes Water in the Screen
 - Requires Flow Greater than the Loss by Partial Pressure



Concentration Gradient

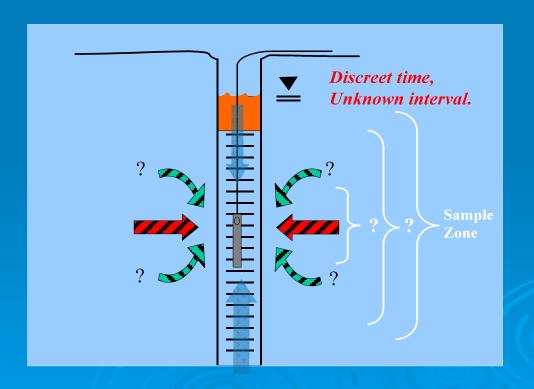
Contaminant
 Concentrations Often
 Occur in Discrete
 Intervals

ContaminantConcentrations OftenChange with Depth



Purged Wells

Flow-Weighted Average Concentrations

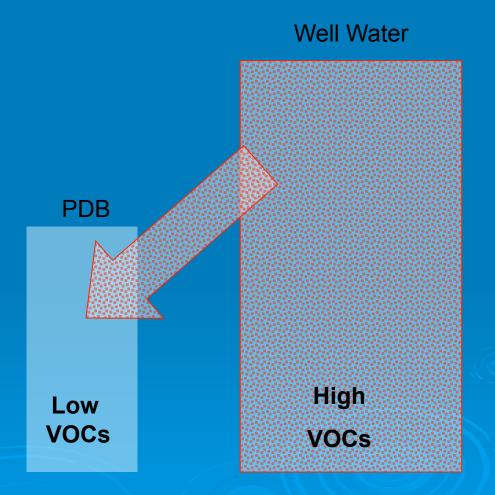

"Blended" Samples

Low Flow Sampling

- Uncertain Sample Contribution Area
- Can Produce Vertical Flow in Casing

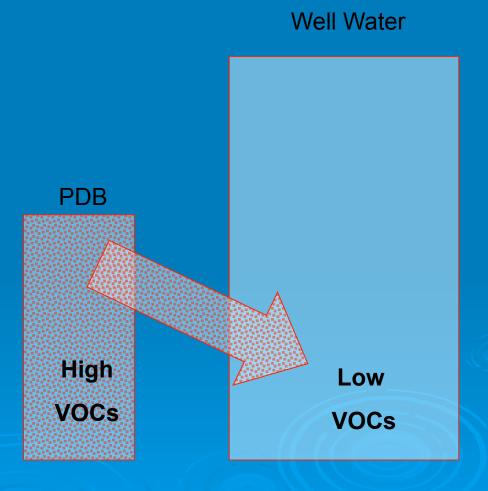
What is Passive Diffusion Sampling?

- VOCs diffuse from groundwater
- Through a semi-permeable membrane
- Into a DI water-filled, closed sampler
- Until VOC concentrations equilibrate
 - Under Natural Passive Conditions
 - From Discrete Intervals
 - In the Well Screen

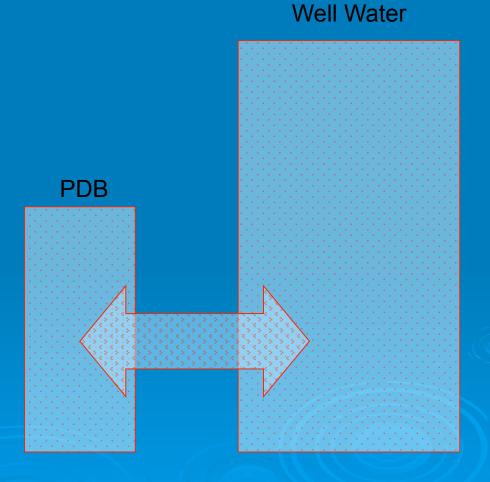

How Does It Work

- Semi-Permeable Membrane Filled with Delonized Water
- Installed and Left in Flow Zones
- Concentration Gradient Between Aquifer and De-Ionized Water Drives Diffusion
- Membrane Allows Dynamic Equilibration of Certain VOC Compounds
- Sampler is Recovered with VOCs Intact

Diffusion


- Concentration Gradient
- Molecules Migrate

Diffusion


- Concentration Gradient
- Molecules Migrate

Equilibration

- Concentration Gradient
- Molecules Migrate

PDB USE

- ➤ Non-Polar VOCs
- ➤ Less than 18 Angstroms Diameter

Partial List of VOCs

Table 1. Compounds tested under laboratory conditions for use with passive diffusion bag samplers [From Vroblesky and Campbell, 2001]

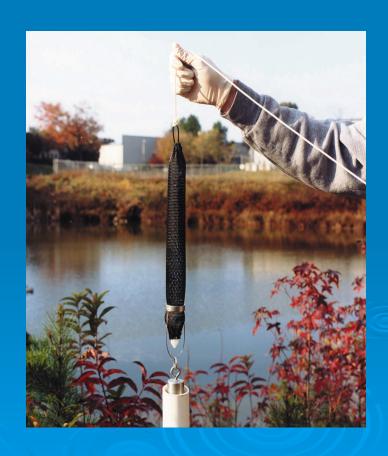
	age differences in concentrati d test-vessel water) in laboral	

Benzene	2 Chlorovinyl ether	cis-1,2-Dichloroethene	1,1,1-Trichloroethane
Bromodichloromethane	Dibromochloromethane	trans-1,2-Dichloroethene	1,1,2-Trichloroethane
Bromoform	Dibromomethane	1,2-Dichloropropane	Trichlorcethene
Chlorobenzene	1,2-Dichlorobenzene	cis-Dichloropropene	Trichlorofluoromethane
Carbon tetrachloride	1,3-Dichlorobenzene	1,2-Dibromoethane	1,2,3-Trichloropropane
Chloroethane	1,4-Dichlorobenzene	trans-1,3-Dichloropropene	1,1,2,2-Tetrachloroethane
Chloroform	Dichlorodifluoromethane	Ethyl benzene	Tetrachloroethene
Chloromethane	1,2-Dichloroethane	Naphthalene	Vinyl chloride
	1,1-Dichloroethene	Toluene	Total xylenes

Tested compounds showing poor correlation (average differences in concentration greater than 20 percent between diffusion-sampler water and test-vessel water) in laboratory tests

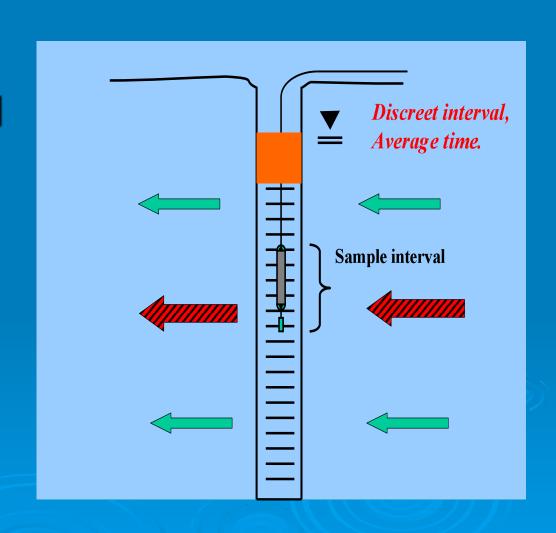
Acetone* Methyl-tert-butyl ether Styrene

*T.M Sivavec and S.S. Bughel, General Electric Company, written commun., 2000


DO NOT Use PDBs

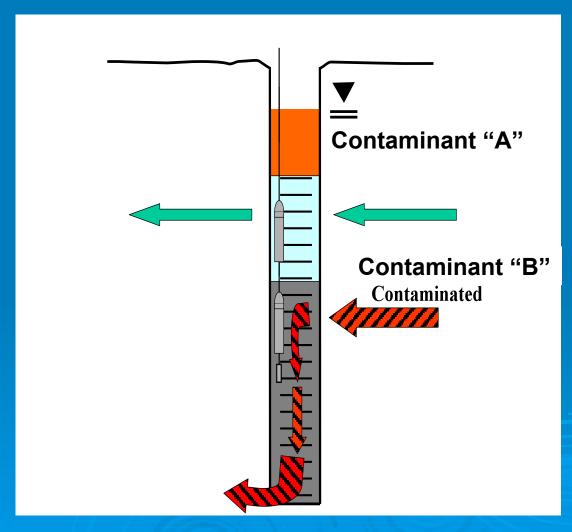
- Acetone, Butanone, MTBE
- Semi-Volatiles
- Metals
- Natural Attenuation Parameters

PDB Sampling Protocol


- Fill EQUILIBRATOR™
- Install in Screen
- Leave In-Place Until Next Sampling Event
- Remove & Replace
- Repeat

Diffusion Placement

- Sampler is Placed in Well Screen
 - Location is
 Determined by
 Profile
 - Each Sampler Represents No More Than 5ft Interval


Concentration Profile

Use of Multiple Samplers Can Provide a Concentration vs. Depth Profile

Use of Multiple Samplers Can Provide a Contaminant vs. Depth Profile

Contaminant Stratification

Proven Reliable

- Proven Reliable in Thousands of Wells
 - Recovers a Wide Range of Required VOCs
 - Correlation with Historical Data
 - Correlation with Other Techniques
 - Bailing, Pumping, Low-Flow Sampling

Complete Data Picture

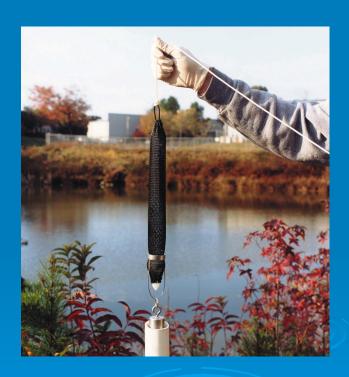
- Depth Discrete Profile
- Less User Interference with Method
 - Fill Sampler
 - Lower to Depth & Leave Site
 - Return to Site, Discharge Contents to VOA

EQUILIBRATOR

First Commercial PDB

- Introduced in 1997
- Multiple Field Installs
- Design Refinements
- Licensed Technology from USGS
- Design Patent Awarded to EON
- World's #1 Selling PDB

PDB Accessories


Installation Accessories

Key Features

- Fill Port
- Integrated Mesh
- Suspension Handle
- Slide-On Weight Hanger
- Multiple Installation Options
- Multiple Discharge Options

Fill Port

Versatility

- Factory Pre-Filled
- Lab Filled
- Site Filled

Reliability

- Water Blanks at Time of Installation
- No Volatile Infusion During Transit
- Equipment Rinse Blanks Possible

Lower Cost

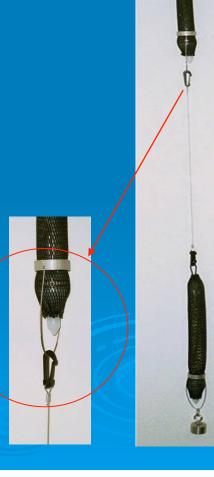
- Lower Shipping Cost
- Water & Equipment Blanks Without Sacrificing Sampler

PDB Preparation

Field Filling PDBs

Integrated Mesh & Suspension Handle

Mesh Secured at Top and Bottom to Carry Sampler Weight


Loop Handle for Rapid & Easy Tether Attachment

Installation Methods

- "Hanger" Method
 - Use for 1 or 2 PDBs
 - Use Slip-On Hangers
 - Individual Tethers with Snap Hooks
 - Weight Suspended from Hanger
 - Quickest & Easiest for 1-2 Samplers
 - Teflon Coated Stainless or Poly Tether

"Hanger" Method

- Slide-On Weight Hanger
- Rapid Deployment
- Fixed Tether Position
- Reusable

Installation Method

- Single-Tether Method
 - Install Multiple PDBs
 - Use 1 Tether & Attachment Rings
 - Attach Sampler at Top & Bottom
 - Weights Attach to Bottom of Tether
 - Easiest for 3 or More Samplers

Suspension Tether

- Well Cap Suspension Assembly
- Snap-Connector
- ▶ ID Tag

Suspension Tether

- Stainless Steel Tether
- Adjustable Connection Point

Suspension Tether

Reusable Stainless Steel Weight

PDB Installation

Installation Using Single Tether Method

PDB Installation

Hand Reel Installation

Discharge Options

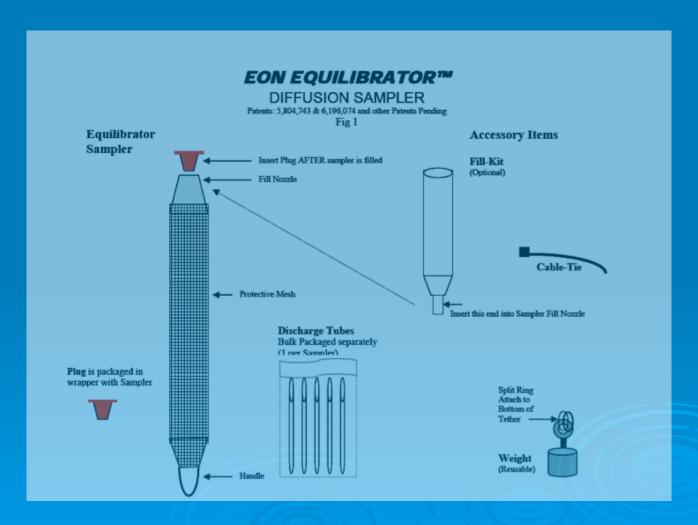
- Use "Juice-Box" Straw
 - No Air Contact
 - Laminar Flow
 - Fill VOA Vial from Bottom
 - Very Easy for One Person
- Pour from Fill Port
 - One Person Use
- Use Port Device

Step-By-Step

Using Fill Kit

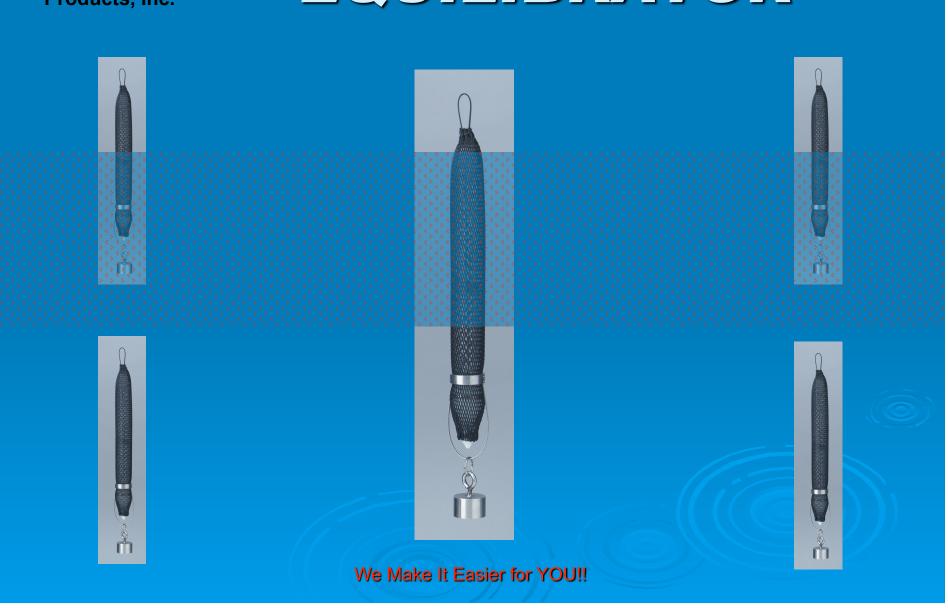
Inserting Plug

Attaching Weight



We Make It Easier for YOU!Sample Discharge

EQUILIBRATOR


Dimensions & Capacities

- 4 mil Thick Polyethylene Membrane
- Diameter (when full)
 - Standard ~1.75 inches
 - Mini ~1.00 inches*
 - Micro ~0.69 inches*
 - *Field Testing/Development
- Length
 - Standard; 18 inches, ~350 ml volume
 - Mini & Micro; 24 48 inches, ~200+ ml volume
 - Custom Lengths Produced, 12 inches to 5 feet length

EQUILIBRATOR[™]

